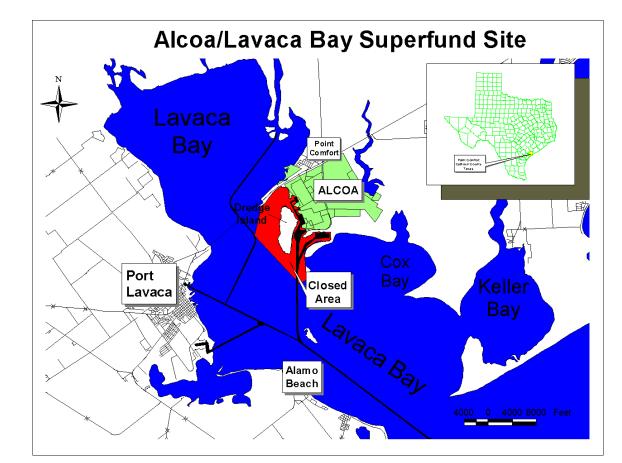
LAVACA BAY, TX

LAURA HUNT

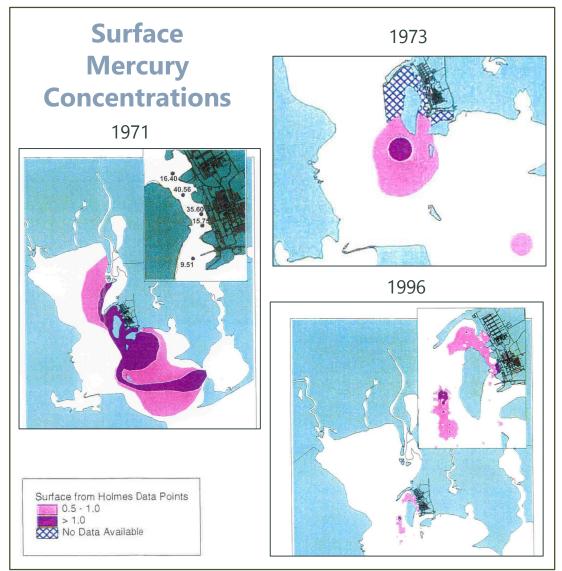

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION 6

Lavaca Bay Site Overview

Background

- 1948-80: Aluminum smelter
- 1959: Bauxite refining starts
- 1966-1979: Chlor-Alkali Process Area (CAPA) operated
- 1988: Portion of Lavaca Bay closed
- March 1994: Placed on NPL
- December 2001: Record of Decision
- July 2007: Construction complete
- 2011, 2016, 2021: Five-Year Reviews

Project Area


Source Characterization

- RI/FS from 1994 to 2001
- Site COCs are mercury and PAHs
- Key ongoing sources of mercury
 - Chlor-Alkali Process Area
 - Estimated 40 lb/yr discharge to bay
 - Dredge Island stormwater runoff
 - Estimated 8 to 13 lbs/yr runoff to bay
 - Existing sediments along Alcoa Channel

Bay System RI Findings

- Radiochemistry study
 - Historic releases buried through sedimentation
 - Mercury in surface sediment due to ongoing sources
 - Recovery half-times are 1 to 9 years
- Hurricane model
 - Storm will not resuspend mercury buried at depth

Objectives of Remediation

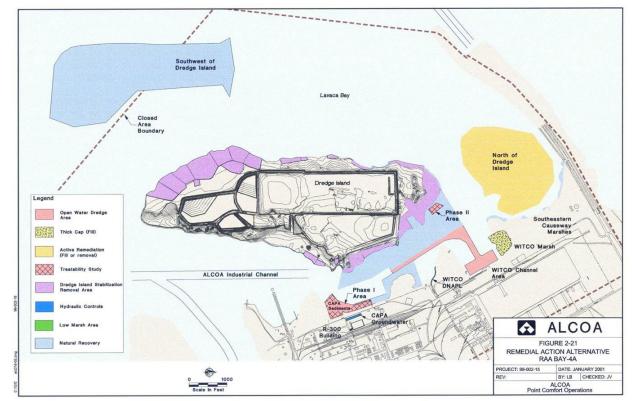
- Remedial Action objectives
 - Address ongoing unpermitted discharges
 - Reduce sediment mercury levels in bay habitats
 - Reduce mercury levels in finfish
- Target cleanup goals
 - Marsh: 0.25 ppm mercury
 - Open water: 0.5 ppm mercury
 - Fish tissue in Closed Area same as outside Closed Area
- ROD for Final Action issued December 2001

Summary of Remedy

- Early Actions
 - Dredge Island: removal action (1998-2001)
 - CAPA: groundwater extraction (1998)
 - CAPA/North of Dredge Island: dredging treatability studies (1998)
- ROD Actions
 - Witco Channel: dredged 200,000 cubic yards (2001)
 - Witco Marsh: dredged 60,000 cubic yards (2006)
 - Monitored natural recovery

Primary Pre- and Post-Remedy Effectiveness Monitoring Elements

- Mercury was primary COC monitored
- Remedy monitoring
 - Open-water sediment
 - Marsh sediment
 - Red drum
 - Blue crab



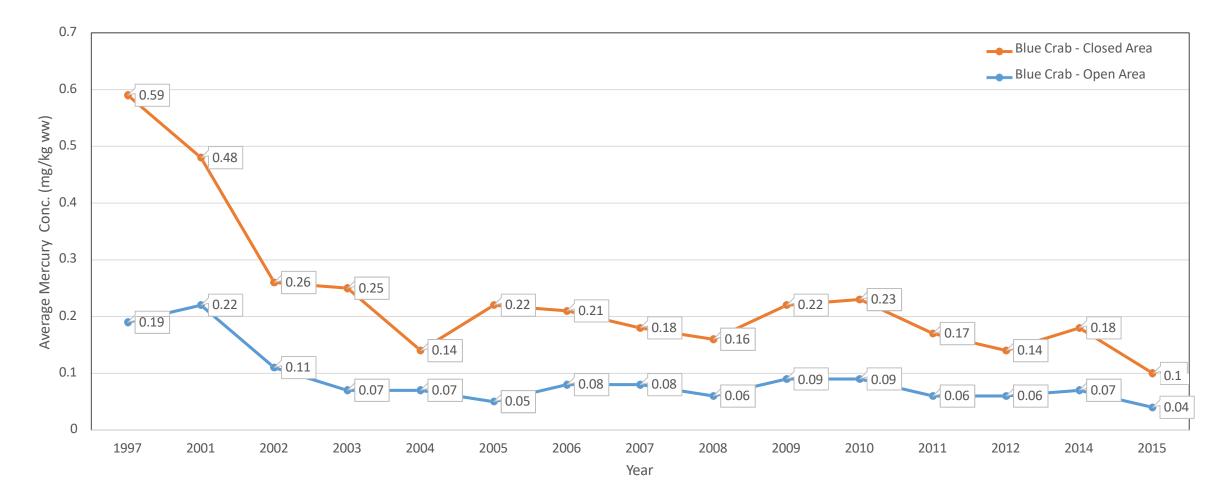
Did the Remedy Achieve Short- and/or Long- Term Remediation Objectives for Surface Sediment?

- Open water PRG: 0.5 ppm mercury
- – 2004: 0.293 ppm
- – 2005: 0.276 ppm
- Marsh PRG: 0.25 ppm mercury
 - 2015: All marshes less than 0.25 ppm mercury
- Lessons learned
 - Early actions effective in achieving sediment remediation goals

Significant Remedy Scope or Schedule Deviations

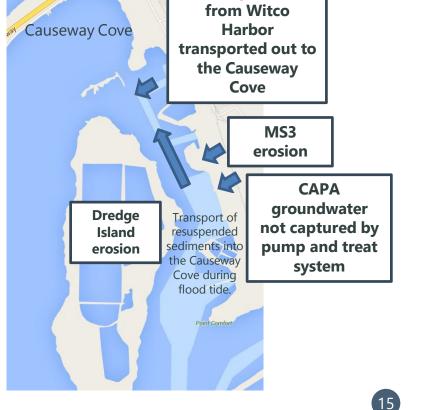
- 2007 Explanation of Significant Differences
 - Removed requirement for thinlayer cap north of Dredge Island
- Lessons learned
 - Achieving sediment cleanup levels is not equal to achieving fish cleanup objective

Is the Remedy on Track to Achieve Long-Term Remediation Objectives for Water and/or Biota?


- Time will tell
- 2011 Five-Year Review: additional actions to accelerate fish tissue recovery
- 2016 Five-Year Review: long-term protectiveness deferred
- 2021 Five-Year Review: long-term protectiveness deferred
- Lessons learned
 - Do not claim victory too soon
 - Recovery times longer than predicted

Red Drum Mercury Concentrations

Sediment Remedy Effectiveness Retrospective Workshop


Juvenile Blue Crab Mercury Concentrations

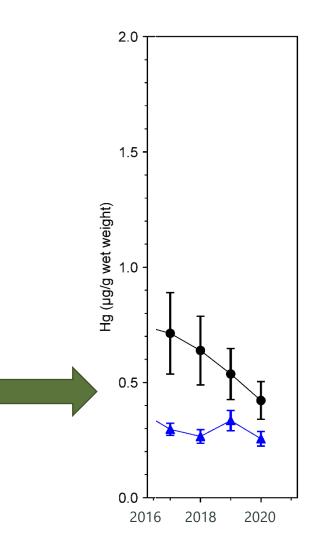
Sediment Remedy Effectiveness Retrospective Workshop

Is the Remedy on Track to Achieve Long-Term Remediation Objectives for Water and/or Biota?

- Conducted field studies to evaluate factors influencing mercury in fish tissue concentration
- Developed response action plan using 2016 data
 - Dredged 400,000 cubic yards of impacted sediment
 - Removed all marsh habitats

Resuspension

Red Drum Mercury Concentrations



Sediment Remedy Effectiveness Retrospective Workshop

2020 Red Drum Mercury 2020 Findings

The Closed Area mean concentration is approaching the mean concentration in the Open Area

Year	<u>Δ THg (μg/g)</u>
2017	0.41
2018	0.37
2019	0.21
2020	0.16

(17

Sediment Remedy Effectiveness Symposium

Key Take-Home Messages

- Baseline data are critical to evaluating remedy success
- Early actions resulted in decreases of mercury in sediment and fish
- Residual sources may be more important than originally believed
- Reductions in fish mercury levels do not occur in proportion to reductions in sediment total mercury concentrations in areas where fish feed
- Low mercury levels in marshes can still be methylation hot beds
- Proactive team (industry/regulators) leads to action